If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3m^2)-m-4=0
We add all the numbers together, and all the variables
3m^2-1m-4=0
a = 3; b = -1; c = -4;
Δ = b2-4ac
Δ = -12-4·3·(-4)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-7}{2*3}=\frac{-6}{6} =-1 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+7}{2*3}=\frac{8}{6} =1+1/3 $
| -5-15=10+20x | | -14=2(x–3) | | P-18/4=3-4p-3/2 | | 216=167-y | | (3p)/(8)-13=-25 | | 7y-29=-71 | | x/16-1=15 | | (3x-4)=(x+20) | | 0.3/4=9/y | | b/19-4b/19=9/19 | | 9+(n)/(5)=19 | | 100x+55=150x+51 | | n=2(15+15)-4 | | x4=2x | | n=2(19+19)-4 | | 3/16=x/8 | | (5)/(6)x-4=-2 | | 8+5n=7n+8 | | n=2(22+22)-4 | | −0.4=3/g-0.9 | | −0.4=3/g−0.9 | | 0=56,1001+2a(1,87) | | 12=(2+z)/(-6) | | 3/4a-5=1/2a+2 | | -5(r+3)=-74 | | 3/4y-5=1/2y+2 | | 3/4Q-7=2q+3 | | 21x+50-16x=100 | | 6y=8=9+6y | | 3(x-2)^2=24 | | n=2(29+16)-4 | | -2(8x=2)=-16x+2 |